The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell–intrinsic fashion and suppresses CNS autoimmunity

نویسندگان

  • Luisa Klotz
  • Sven Burgdorf
  • Indra Dani
  • Kaoru Saijo
  • Juliane Flossdorf
  • Stephanie Hucke
  • Judith Alferink
  • Nina Novak
  • Marc Beyer
  • Gunter Mayer
  • Birgit Langhans
  • Thomas Klockgether
  • Ari Waisman
  • Gerard Eberl
  • Joachim Schultze
  • Michael Famulok
  • Waldemar Kolanus
  • Christopher Glass
  • Christian Kurts
  • Percy A. Knolle
چکیده

T helper cells secreting interleukin (IL)-17 (Th17 cells) play a crucial role in autoimmune diseases like multiple sclerosis (MS). Th17 differentiation, which is induced by a combination of transforming growth factor (TGF)-beta/IL-6 or IL-21, requires expression of the transcription factor retinoic acid receptor-related orphan receptor gamma t (ROR gamma t). We identify the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) as a key negative regulator of human and mouse Th17 differentiation. PPAR gamma activation in CD4(+) T cells selectively suppressed Th17 differentiation, but not differentiation into Th1, Th2, or regulatory T cells. Control of Th17 differentiation by PPAR gamma involved inhibition of TGF-beta/IL-6-induced expression of ROR gamma t in T cells. Pharmacologic activation of PPAR gamma prevented removal of the silencing mediator for retinoid and thyroid hormone receptors corepressor from the ROR gamma t promoter in T cells, thus interfering with ROR gamma t transcription. Both T cell-specific PPAR gamma knockout and endogenous ligand activation revealed the physiological role of PPAR gamma for continuous T cell-intrinsic control of Th17 differentiation and development of autoimmunity. Importantly, human CD4(+) T cells from healthy controls and MS patients were strongly susceptible to PPAR gamma-mediated suppression of Th17 differentiation. In summary, we report a PPAR gamma-mediated T cell-intrinsic molecular mechanism that selectively controls Th17 differentiation in mice and in humans and that is amenable to pharmacologic modulation. We therefore propose that PPAR gamma represents a promising molecular target for specific immunointervention in Th17-mediated autoimmune diseases such as MS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sex-Based Selectivity of PPARγ Regulation in Th1, Th2, and Th17 Differentiation

Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been recognized to regulate adaptive immunity through Th17 differentiation, Treg functions, and TFH responses. However, its role in adaptive immunity and autoimmune disease is still not clear, possibly due to sexual differences. Here, we investigated in vitro treatment study with the PPARγ agonist pioglitazone to compare Th1,...

متن کامل

Ciglitazone, a Peroxisome Proliferator-Activated Receptor Gamma Ligand, Inhibits Proliferation and Differentiation of Th17 Cells

Peroxisome proliferator-activated receptor gamma (PPARγ) was identified as a cell-intrinsic regulator of Th17 cell differentiation. Th17 cells have been associated with several autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), inflammatory bowel disease (IBD), and collagen-induced arthritis. In this study, we confirmed PPARγ-mediated inhibition of Th17 cell differe...

متن کامل

Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression.

The de novo generation of Foxp3+ regulatory T (Treg) cells in the peripheral immune compartment and the differentiation of Th17 cells both require TGF-beta, and IL-6 and IL-21 are switch factors that drive the development of Th17 cells at the expense of Treg cell generation. The major vitamin A metabolite all-trans retinoic acid (RA) not only enforces the generation of Treg cells but also inhib...

متن کامل

Socs3 induction by PPARγ restrains cancer-promoting inflammation

The presence of proinflammatory cytokines in the tumor microenvironment can support further growth of established cancers. Docosahexaenoic acid (DHA), a peroxisome proliferator-activated receptor-gamma (PPARγ) ligand, has been shown to suppress inflammation and limit tumor progression in vivo. Are the anticancer properties of DHA relying on its ability to prevent inflammation? If so, what are t...

متن کامل

Nuclear receptors take center stage in Th17 cell-mediated autoimmunity.

Liver X receptors (LXRs) are nuclear receptors involved in cholesterol homeostasis. Notably, they are also expressed by T cells and are involved in regulating T cell proliferation and differentiation. In this issue of the JCI, Cui et al. have elucidated the molecular mechanism underlying the effects of LXR activation on a subset of T cells known as Th17 cells in mice and humans. Specifically, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 206  شماره 

صفحات  -

تاریخ انتشار 2009